陈赛华Saihua Chen

副高级

副高级 博士生导师

电子邮箱:

入职时间:2017-05-01

所在单位:农学院

职务:农学院作物遗传育种与应用生物技术系副主任

学历:博士研究生毕业

办公地点:扬州大学荷花池校区逸夫楼东楼308室

在职信息:在岗

主要任职:作物遗传育种系副主任

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa)

发布时间:2024-03-10 点击次数:

DOI码:10.1016/S2095-3119(19)62710-3
发表刊物:Journal of Integrative Agriculture
关键字:OsHemA, GluTR, chlorophyll biosynthesis
摘要:Chlorophyll (Chl) biosynthesis is essential for photosynthesis and plant growth. Glutamyl-tRNA reductase (GluTR) catalyzes glutamyl-tRNA into glutamate-1-semialdehyde (GSA) and initiates the chlorophyll biosynthesis. Even though the main role of GluTR has been established, the effects caused by natural variations in its corresponding gene remain largely unknown. Here, we characterized a spontaneous mutant in paddy field with Chl biosynthesis deficiency, designated as cbd1. With intact thylakoid lamellar structure, the cbd1 plant showed light green leaves and reduced Chl and carotenoids (Cars) content significantly compared to the wild type. By map-based gene cloning, the mutation was restricted within a 57-kb region on chromosome 10, in which a mPingA miniature inverted-repeat transposable element (MITE) inserted in the promoter region of OsHemA gene. Both leaf color and the pigment contents in cbd1 were recovered in a complementation test, confirming OsHemA was responsible for the mutant phenotype. OsHemA was uniquely predicted to encode GluTR and its expression level was dramatically repressed in cbd1. Transient transformation in protoplasts demonstrated that GluTR localized in chloroplasts and a signal peptide exists in its N-terminus. A majority of Chl biosynthesis genes, except for POR and CHLG, were down-regulated synchronously by the repression of OsHemA, suggesting that an attenuation occurred in the Chl biosynthesis pathway. Interestingly, we found major agronomic traits involved in rice yield were statistically unaffected, except for the number of full grains per panicle was increased in cbd1. Collectively, OsHemA plays an essential role in Chl biosynthesis in rice and its weak allele can adjust leaf color and Chls content without compromise to rice yield.
论文类型:Research Atricle
卷号:19
期号:3
页面范围:612-623
是否译文:
发表时间:2019-05-25
收录刊物:SCI