陈赛华Saihua Chen

副高级

副高级 博士生导师

电子邮箱:

入职时间:2017-05-01

所在单位:农学院

职务:农学院作物遗传育种与应用生物技术系副主任

学历:博士研究生毕业

办公地点:扬州大学荷花池校区逸夫楼东楼308室

在职信息:在岗

主要任职:作物遗传育种系副主任

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize (Zea mays L.)

发布时间:2024-03-10 点击次数:

DOI码:10.3390/genes15030289
发表刊物:Genes
关键字:maize; RNA-seq; heat resistant; heat response; genes
摘要:High temperatures are increasingly becoming a prominent environmental factor accelerating the adverse influence on the growth and development of maize (Zea mays L.). Therefore, it is critical to identify the key genes and pathways related to heat stress (HS) tolerance in maize. Great challenges have been faced in dissecting genetic mechanisms and uncovering master genes for HS tolerance. Here, Z58D showed more thermotolerance than AF171 at the seedling stage with a lower wilted leaf rate and H2O2 accumulation under HS conditions. Transcriptomic analysis identified 3006 differentially expressed genes (DEGs) in AF171 and 4273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that commonly upregulated genes in AF171 and Z58D were significantly enriched in the following biological processes, including protein folding, response to heat, response to temperature stimulus and response to hydrogen peroxide. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus were significantly over-represented for the 1234 upregulated genes in Z58D. Furthermore, more commonly upregulated genes exhibited higher expression levels in Z58D than AF171. In addition, maize inbred CIMBL55 was verified to be more tolerant than B73, and more commonly upregulated genes also showed higher expression levels in CIMBL55 than B73 under HS. These consistent results indicate that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among five inbred lines via comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at the expression levels. These candidate genes may confer thermotolerance in maize.
论文类型:Research Atricle
文献类型:J
卷号:0
页面范围:0
是否译文:
发表时间:2024-02-25
收录刊物:SCI