Personal HomePage

+

Ma HongXiang

Recommended Ph.D.Supervisor Recommended MA Supervisor

Personal Information

Supervisor of Doctorate Candidates

Master Tutor

Name (English):Ma HongXiang

Name (Pinyin):MA HONGXIANG

E-Mail:

School/Department:农学院

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:文汇路校区农学楼26-123

Gender:Male

Contact Information:0514-87977840 18994112397

Degree:Doctoral Degree in Agriculture

Professional Title:正高级

Status:Employed

Academic Titles:Distinguished Professor

Alma Mater:Nanjing Agricultural University

Discipline:
Crop Genetics and Breeding

Academic Honor:
2013 elected:Top talent
2013 elected:Province tu gong
2014 elected:The national million talents project
2014 elected:Awarded the Title of National Expert with Remarkable Contributions
2014 elected:Participant of the New Century National Talents Project (State Level)
2016 elected:The government post

Honors and Titles:
2014-12-31 elected:百千万人才国家级人选/突出贡献中青年专家
2016-12-30 elected:国务院政府特殊津贴
2014-12-01 elected:全国优秀科技工作者
2013-10-01 elected:江苏省333高层次人才培养工程第二层次培养对象
2012-11-16 elected:江苏省有突出贡献中青年专家
2014-11-05 elected:江苏省六大人才高峰高层次人才(A类项目)
2012-03-01 elected:江苏省粮食生产突出贡献农业科技人员
2024-01-05 elected:扬州市“绿扬金凤计划”领军人才

Other Contact Information:

ZipCode:

Fax:

PostalAddress:

OfficePhone:

Email:


A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat

Date:2021-09-27 clicks:

DOI number:10.1038/s41588-019-0425-8

Journal:Nature Genetics

Abstract:Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum, is a destructive wheat disease that threatens global wheat production. Fhb1, a quantitative trait locus discovered in Chinese germplasm, provides the most stable and the largest effect on FHB resistance in wheat. Here we show that TaHRC, a gene that encodes a putative histidinerich calcium-binding protein, is the key determinant of Fhb1-mediated resistance to FHB. We demonstrate that TaHRC encodes a nuclear protein conferring FHB susceptibility and that a deletion spanning the start codon of this gene results in FHB resistance. Identical sequences of the TaHRC-R allele in diverse accessions indicate that Fhb1 had a single origin, and phylogenetic and haplotype analyses suggest that the TaHRC-R allele most likely originated from a line carrying the Dahongpao haplotype. This discovery opens a new avenue to improve FHB resistance in wheat, and possibly in other cereal crops, by manipulating TaHRC sequence through bioengineering approaches.

Indexed by:Letters

Volume:51

Page Number:1099-1105

Translation or Not:no

Date of Publication:2019-06-10

Pre One:Genome wide association mapping of resistance to Fusarium head blight spread and deoxynivalenol accumulation in Chinese elite wheat germplasm Next One:Yeast two-hybrid screening for proteins that interact with PFT in wheat