Personal HomePage

+

Ma HongXiang

Recommended Ph.D.Supervisor Recommended MA Supervisor

Personal Information

Supervisor of Doctorate Candidates

Master Tutor

Name (English):Ma HongXiang

Name (Pinyin):MA HONGXIANG

E-Mail:

School/Department:农学院

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:文汇路校区农学楼26-123

Gender:Male

Contact Information:0514-87977840 18994112397

Degree:Doctoral Degree in Agriculture

Professional Title:正高级

Status:Employed

Academic Titles:Distinguished Professor

Alma Mater:Nanjing Agricultural University

Discipline:
Crop Genetics and Breeding

Academic Honor:
2013 elected:Top talent
2013 elected:Province tu gong
2014 elected:The national million talents project
2014 elected:Awarded the Title of National Expert with Remarkable Contributions
2014 elected:Participant of the New Century National Talents Project (State Level)
2016 elected:The government post

Honors and Titles:
2014-12-31 elected:百千万人才国家级人选/突出贡献中青年专家
2016-12-30 elected:国务院政府特殊津贴
2014-12-01 elected:全国优秀科技工作者
2013-10-01 elected:江苏省333高层次人才培养工程第二层次培养对象
2012-11-16 elected:江苏省有突出贡献中青年专家
2014-11-05 elected:江苏省六大人才高峰高层次人才(A类项目)
2012-03-01 elected:江苏省粮食生产突出贡献农业科技人员
2024-01-05 elected:扬州市“绿扬金凤计划”领军人才

Other Contact Information:

ZipCode:

Fax:

PostalAddress:

OfficePhone:

Email:


A phase-separated protein hub modulates resistance to Fusarium head blight in wheat

Date:2024-04-28 clicks:

DOI number:10.1016/j.chom.2024.04.002

Journal:Cell Host & Microbe

Key Words:phase-separated; Fusarium head blight; wheat

Abstract:Fusarium head blight (FHB) is a devastating wheat disease. Fhb1, the most widely applied genetic locus for FHB resistance, is conferred by TaHRC of an unknown mode of action. Here, we show that TaHRC alleles distinctly drive liquid-liquid phase separation (LLPS) within a proteinaceous complex, determining FHB susceptibility or resistance. TaHRC-S (susceptible) exhibits stronger LLPS ability than TaHRC-R (resistant), and this distinction is further intensified by fungal mycotoxin deoxynivalenol, leading to opposing FHB symptoms. TaHRC recruits a protein class with intrinsic LLPS potentials, referred to as an HRC-containing hub. TaHRC-S drives condensation of hub components, while TaHRC-R comparatively suppresses hub condensate formation. The function of TaSR45a splicing factor, a hub member, depends on TaHRC-driven condensate state, which in turn differentially directs alternative splicing, switching between susceptibility and resistance to wheat FHB. These findings reveal a mechanismfor FHB spread within a spike and shed light on the roles of complex condensates in controlling plant disease.

Indexed by:Research Article

Volume:32

Page Number:1-17

Translation or Not:no

Date of Publication:2024-04-23

Included Journals:SCI

Pre One:Editorial for the Special Issue Genetics Studies on Wheat Next One:Large-scale breeding population validating significant loci for the 1000-kernel weight of wheat