个人信息
教师姓名:张永才
教师拼音名称:ZYC
电子邮箱:
入职时间:2003-06-01
所在单位:化学化工学院
职务:professor
学历:博士研究生毕业
办公地点:N111, New Chemistry Building, Yangzhou University, No.180 Siwangting Road, Yangzhou City
联系方式:zhangyc@yzu.edu.cn
学位:博士
职称:副高级
在职信息:在岗
硕士生导师
-
所属院系: 化学化工学院
-
学科:无机化学
其他联系方式
暂无内容
论文成果
Magnetically recoverable MgFe2O4/conjugated polyvinyl chloride derivative nanocomposite with higher visible-light photocatalytic activity for treating Cr(VI)-polluted water
发布时间:2021-06-08 点击次数:
DOI码:10.1016/j.seppur.2019.116272
所属单位:扬州大学
教研室:无机教研室
发表刊物:Separation and Purification Technology
项目来源:江苏省自然科学基金
关键字:MgFe2O4/CPVC nanocomposite; Photocatalytic enhancement; Magnetic recovery; Cr(VI) treatment
摘要:A facile three-step method was adopted to synthesize MgFe2O4/conjugated polyvinyl chloride (CPVC) nanocomposite. XRD, Raman, XPS, SEM, EDX, element mapping, and HRTEM analyses confirmed the formation of MgFe2O4/CPVC nanocomposite. The optical and magnetic properties of the obtained MgFe2O4/CPVC nanocomposite were measured using UV–Vis spectrophotometer and vibrating sample magnetometer, respectively. Through photocatalytic reduction of aqueous Cr(VI) under visible-light (λ > 420 nm) irradiation, it can be noticed that MgFe2O4/CPVC nanocomposite had both improved visible-light photocatalytic activity (about 2.1 times that of MgFe2O4 nanoparticles) and good photocatalytic stability. Moreover, MgFe2O4/CPVC nanocomposite can also be easily recovered by use of a magnet. Based on electrochemical impedance, transient photocurrent response and Mott-Schottky measurement, the mechanism responsible for the enhanced photocatalytic activity of MgFe2O4/CPVC nanocomposite was proposed. Finally, MgFe2O4/CPVC nanocomposite was applied to photocatalytic treatment of the diluted black chromium electroplating solution at different pH. Results showed that MgFe2O4/CPVC nanocomposite had significant visible-light photocatalytic activity in treating the diluted black chromium electroplating solution over a wide pH range (1.4–10.3), and its treatment efficiency increased with the decrease of solution pH. Thus, MgFe2O4/CPVC nanocomposite has the potential to be a new magnetically recoverable, high-performance visible-light photocatalyst for treating Cr(VI)-polluted water.
论文类型:journalArticle
论文编号:116272
学科门类:理学
一级学科:化学
文献类型:journalArticle
卷号:236
是否译文:否
发表时间:2020-04-01
收录刊物:SCI