个人信息

  • 教师姓名:张永才

  • 教师拼音名称:ZYC

  • 电子邮箱:

  • 入职时间:2003-06-01

  • 所在单位:化学化工学院

  • 职务:professor

  • 学历:博士研究生毕业

  • 办公地点:N111, New Chemistry Building, Yangzhou University, No.180 Siwangting Road, Yangzhou City

  • 联系方式:zhangyc@yzu.edu.cn

  • 学位:博士

  • 职称:副高级

  • 在职信息:在岗

  • 硕士生导师

  • 所属院系: 化学化工学院

  • 学科:无机化学

其他联系方式

  • 暂无内容

论文成果

Controllable growth of silver nanoparticles on titanium dioxide/nitrogen-doped carbon nanofiber/molybdenum disulfide: Toward enhanced photocatalytic-activating peroxymonosulfate performance and “memory catalysis”

发布时间:2023-12-17  点击次数:

发表刊物:Chemical Engineering Journal

关键字:Photocatalytic-activating PMS; synergy; Memory catalysis; Dark deposition; Tetracycline

摘要:The combination of photocatalysis and activating peroxymonosulfate (PMS) can generate more active species and degrade pollutants more efficiently. The introduction of “memory catalysis” in the photocatalytic-activating PMS system can further improve the catalytic degradation ability in the dark environment, because the stored electrons (e−1) during photocatalytic process can release in darkness to continue the degradation. In this paper, molybdenum disulfide (MoS2) nanosheets on titanium dioxide/nitrogen-doped carbon nanofibers (T/NC/MoS2 NFs) were prepared by electrospinning and hydrothermal treatment, and then silver (Ag) nanoparticles were deposited by photodeposition (PD) or dark deposition (DD) to form T/NC/MoS2@Ag NFs-PD and T/NC/MoS2@Ag NFs-DD, respectively. The influences of the two samples on the degradation of tetracycline (TC) and “memory catalysis” in photocatalytic-activating PMS systems were explored. The results show that T/NC/MoS2@Ag NFs-DD can remove TC more efficiently and reduce energy consumption. This is because the DD technology can effectively inhibit the growth and aggregation of Ag nanoparticles, thereby improving the e−1 storage capacity and the separation of photogenerated e−1 and holes (h+). Under outdoor solar irradiation, T/NC/MoS2@Ag NFs-DD showed excellent stability and high efficiency in catalytic degradation of a variety of organic pollutants. This study provides a new strategy to realize the efficient and energy-saving degradation of organic pollutants.

论文类型:Research Atricle

论文编号:147752

文献类型:Research Atricle

卷号:479

是否译文:否

发表时间:2023-12-01

收录刊物:SCI

发布期刊链接:https://doi.org/10.1016/j.cej.2023.147752

    扬州大学 版权所有 苏ICP备 12022580号-1 
    地址:中国·江苏·扬州市大学南路88号 电话(TEL):86-0514-87991201

微信扫描