Personal HomePage

+

Recommended MA Supervisor

Personal Information

Master Tutor

Name (Pinyin):ZYC

E-Mail:

School/Department:Yangzhou University

Administrative Position:professor

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:N111, New Chemistry Building, Yangzhou University, No.180 Siwangting Road, Yangzhou City

Contact Information:zhangyc@yzu.edu.cn

Degree:博士

Professional Title:副高级

Status:在岗

Alma Mater:Beijing University of Technology

Discipline:
Inorganic Chemistry

Honors and Titles:
2018-07-15 elected:The most popular class teacher in Yangzhou University
2023-08-01 elected:The most popular class teacher in Yangzhou University
2022-07-01 elected:Excellent undergraduate thesis advisor of Yangzhou University
2014-07-01 elected:Excellent graduate thesis advisor of Yangzhou University
2008-07-01 elected:Excellent undergraduate thesis advisor of Yangzhou University

Controllable growth of silver nanoparticles on titanium dioxide/nitrogen-doped carbon nanofiber/molybdenum disulfide: Toward enhanced photocatalytic-activating peroxymonosulfate performance and “memory catalysis”

Date:2023-12-17 clicks:

Journal:Chemical Engineering Journal

Key Words:Photocatalytic-activating PMS; synergy; Memory catalysis; Dark deposition; Tetracycline

Abstract:The combination of photocatalysis and activating peroxymonosulfate (PMS) can generate more active species and degrade pollutants more efficiently. The introduction of “memory catalysis” in the photocatalytic-activating PMS system can further improve the catalytic degradation ability in the dark environment, because the stored electrons (e−1) during photocatalytic process can release in darkness to continue the degradation. In this paper, molybdenum disulfide (MoS2) nanosheets on titanium dioxide/nitrogen-doped carbon nanofibers (T/NC/MoS2 NFs) were prepared by electrospinning and hydrothermal treatment, and then silver (Ag) nanoparticles were deposited by photodeposition (PD) or dark deposition (DD) to form T/NC/MoS2@Ag NFs-PD and T/NC/MoS2@Ag NFs-DD, respectively. The influences of the two samples on the degradation of tetracycline (TC) and “memory catalysis” in photocatalytic-activating PMS systems were explored. The results show that T/NC/MoS2@Ag NFs-DD can remove TC more efficiently and reduce energy consumption. This is because the DD technology can effectively inhibit the growth and aggregation of Ag nanoparticles, thereby improving the e−1 storage capacity and the separation of photogenerated e−1 and holes (h+). Under outdoor solar irradiation, T/NC/MoS2@Ag NFs-DD showed excellent stability and high efficiency in catalytic degradation of a variety of organic pollutants. This study provides a new strategy to realize the efficient and energy-saving degradation of organic pollutants.

Indexed by:Research Atricle

Document Code:147752

Document Type:Research Atricle

Volume:479

Translation or Not:no

Date of Publication:2023-12-01

Included Journals:SCI

Links to published journals:https://doi.org/10.1016/j.cej.2023.147752

Pre One:Novel durable and recyclable Cu@MoS2/polyacrylamide/copper alginate hydrogel photo-Fenton-like catalyst with enhanced and self-regenerable adsorption and degradation of high concentration tetracycline Next One:Photocatalytic properties of SnS2/SnO2 nanocomposite prepared by thermal oxidation of SnS2 nanoparticles in air